

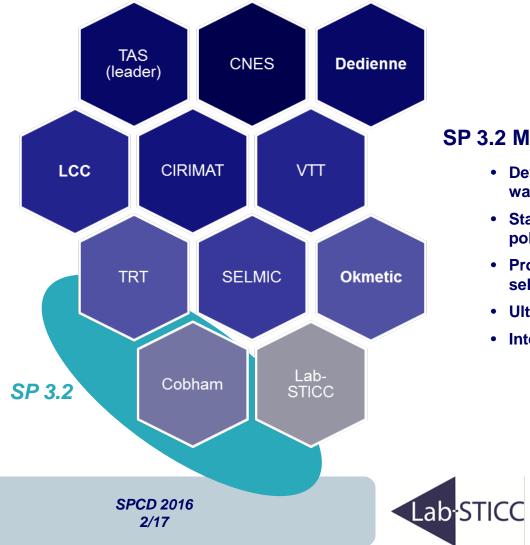
Low-loss millimeter-wave self-biased circulators: materials, design and characterization

Lab-STICC / UBO

Cobham Microwave

V. Laur P. Queffelec J.L. Mattei

Eric Laroche Gilles Martin Thales Research & Technology


R. Lebourgeois J.P. Ganne

LabⁱSTICC THALES COBHRM

SPCD 2016

MM_WIN project

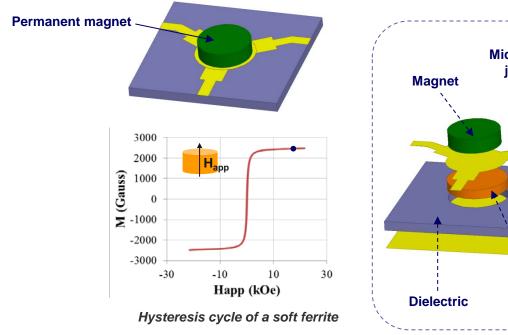
Advanced Millimeter Wave Interconnects

SP 3.2 Minaturized Self-biased Circulators

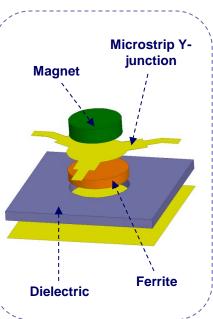
- Development of new pre-oriented materials for mmwave applications (up to 40 GHz)
- Static and dynamic characterization of pre-oriented polycrystalline hexaferrites
- Proof of concept : rectangular waveguide mm-wave self-biased circulator

ГОВНАМ

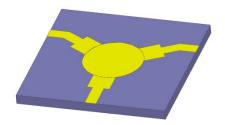
- Ultra-compact planar self-biased circulators
- Integration into RF front-end

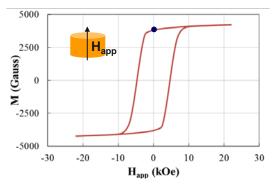

THALES

Self-biased circulators


Classical circulator

Self-biased circulator




- > Soft ferrite
- Magnetization state: saturation
- > Need a permanent magnet

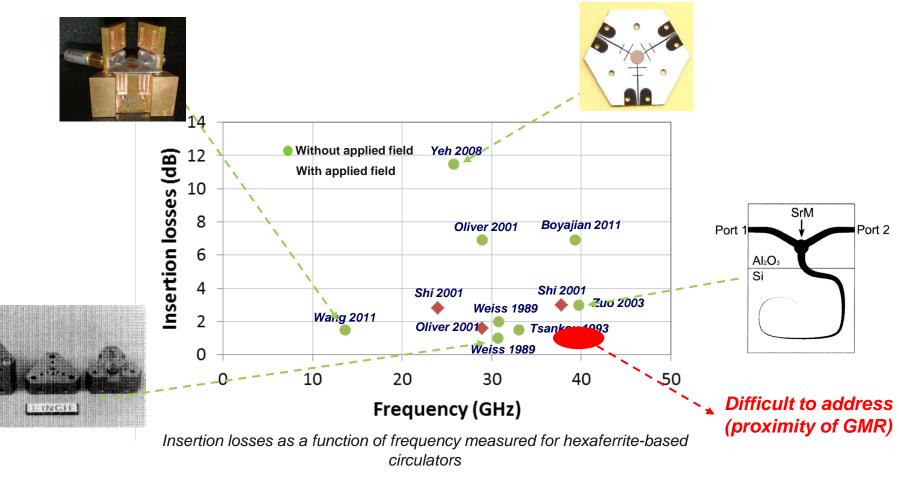
SPCD 2016 3/17

Lab

Hysteresis cycle of a pre-oriented hexaferrite

- Pre-oriented hexaferrite
- Magnetization state: remanence

ГОВНАМ

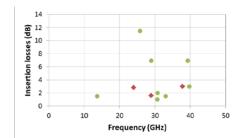

- > No permanent magnet
- > Easier integration

THALES

Self-biased circulators

State of the art

THALES


COBHAM

SPCD 2016 4/17

Self-biased circulators

Choice of materials

- Single crystal hexaferrites
 - Itigh anisotropy field (compatible with mm-wave applications)
 - © Low ΔH
 - © Low remanent magnetization (permanent magnet needed)

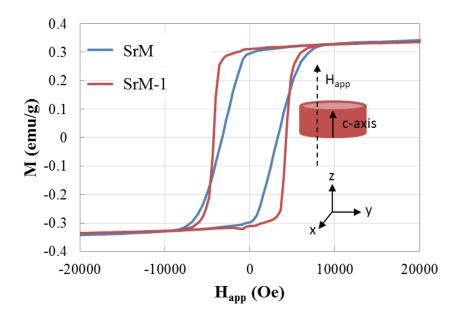
- Pre-oriented hexaferrite composites
 - © High anisotropy field (compatible with mm-wave applications)
 - © High remanent magnetization (self-biased working mode)
 - $\ensuremath{\mathfrak{S}}$ High ΔH (porosity)
 - \otimes High tan δ_d (use of organic binder)
- > Polycrystalline pre-oriented hexaferrites (mainly BaM and SrM)
 - © High anisotropy field (compatible with mm-wave applications)
 - © High remanent magnetization (self-biased working mode)
 - $\ensuremath{\mathfrak{S}}$ Moderate ΔH (porosity)

Use of SrM with La,Co substitution to increase anisotropy field

Lab

THALES

SPCD 2016 5/17

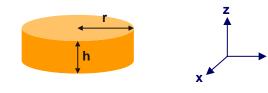

C Materials: Substituted strontium hexaferrites (called SrM-1 and SrM-2)

Synthesis:

- Powder preparation (solid state reaction)
- Powder calcination
- Orientation during pressing
- Sintering at high temperature

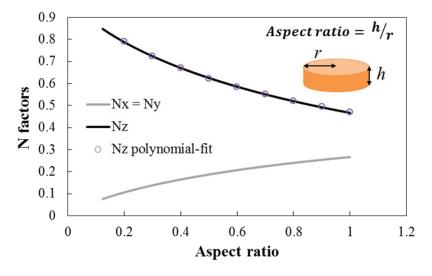
Effects of substitution:

- ➢ Increase of M_r/M_s
- Increase of H_k (higher working frequency / pure SrM)


Comparison of SrM and SrM-1 hysteresis cycles measured using a SQUID

SPCD 2016 6/17

Extrinsic properties of hexaferrite pucks



Internal field

SPCD 2016

7/17

$$\vec{H}_{int} = \vec{H}_{k} + \vec{H}_{app} - \vec{N} \times \vec{M}$$

with $\vec{N} = \begin{pmatrix} N_{\chi} & 0 & 0\\ 0 & N_{y} & 0\\ 0 & 0 & N_{z} \end{pmatrix}$

Evolution of demagnetization coefficients as a function of aspect ratio

ГОВА

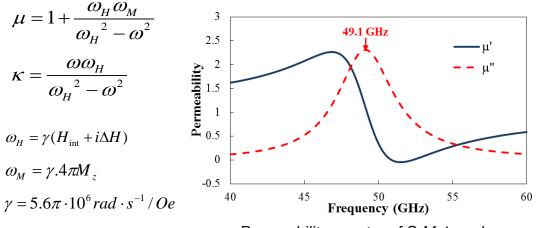
ES

> Interpolation of N_z as a function of shape factor + integration into EM simulators

У

> Shape-dependant magnetic properties: taken into account during the simulations

Lab[·]STICC


THAL

Modeling of circulators

- Use of Ansys HFSS and CST Microwave Studio softwares (Polder's model => only valid for fully saturated ferrites)
- Use of Polder's model for highly pre-oriented hexaferrites:

$$H_{int\ Polder} = H_{app} + H_A - N_Z \times M_r$$
 $M_{Polder} = M_r$

Polder's model

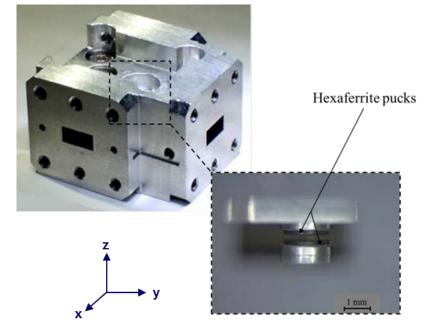
Permeability spectra of SrM-1 puck calculated using Polder's model

SPCD 2016 8/17

Self-biased circulators: 1st run

○ 1st run: comparison between SrM-1 and SrM-2

Realization


- Y-junction in rectangular waveguide technology (WR-19)
- Hexaferrite machining (c-axis perpendicular to the plane)
- Sticking at the center of the Y-junction

Measurement

- Microwave measurement around 40 GHz
- TRL calibration
- Measurement in isolator mode (load connected to one of the port)
- Static magnetic field applied with an electromagnet (when needed)

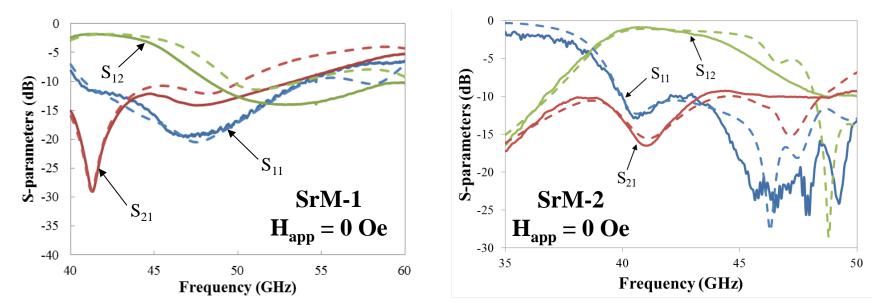
Retro-simulations

> Evaluate the material properties (ΔH , H_k)

Photograph of the circulator in rectangular waveguide technology (Insert: hexaferrite pucks placed in the middle of the Y-junction)

SPCD 2016 9/17

Self-biased circulators: 1st run

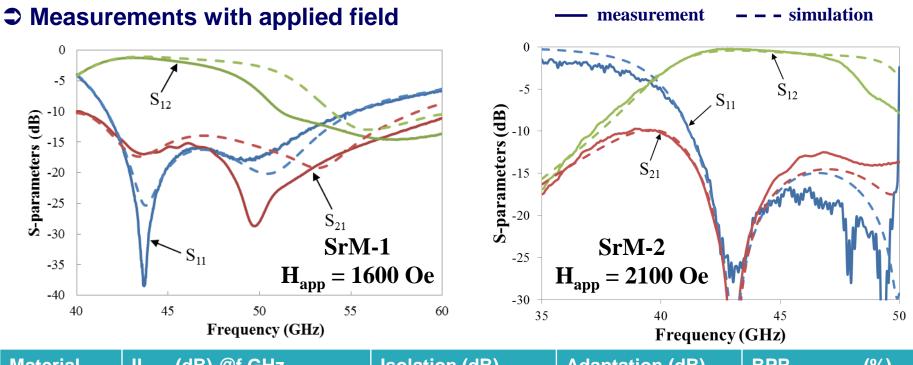

Measurements without applied field

— measurement – -

THALES

– – – simulation

COBHAM


Material	IL _{min} (dB) @f GHz	Isolation (dB)	Adaptation (dB)	BPR _{lso < -15dB} (%)
SrM-1	1,79 @41,4 GHz	28,1	12,5	7,2
SrM-2	0,87 @41 GHz	16,5	12,6	3,2

Lab⁻STICC

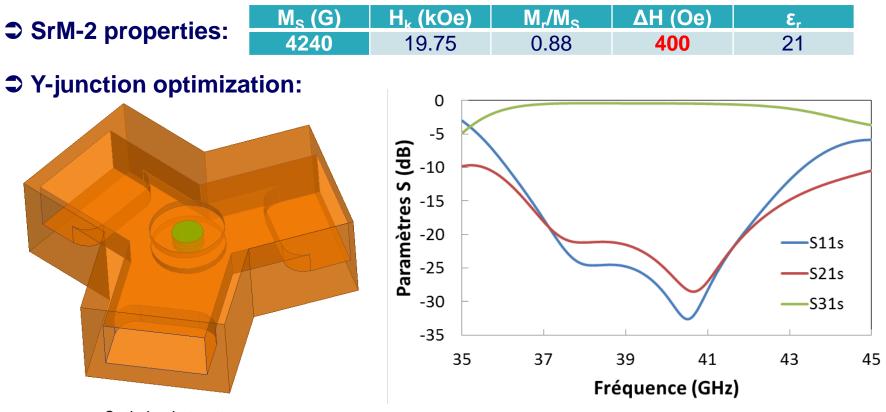
- Good agreements between retro-simulations and measurements
- Quite similar working frequencies
- $\succ IL_{SrM-1} = 2 \times IL_{SrM-2}$

SPCD 2016 10/17

Self-biased circulators: 1st run

Material	IL _{min} (dB) @f GHz	Isolation (dB)	Adaptation (dB)	BPR _{lso < -15dB} (%)
SrM-1	1,23 @43,2 GHz	16,5	24,6	11,2
SrM-2	0,21 @42,9 GHz	41,3	25,6	9,7

Lab


THALES

COBHAM

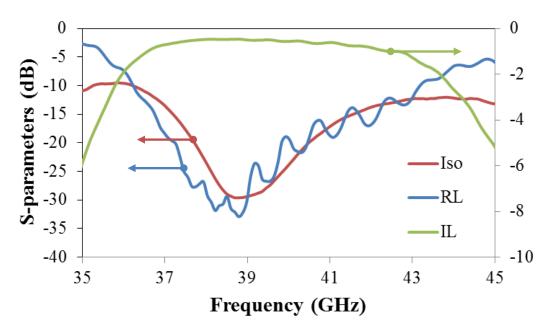
- > Performances improvement with a low applied field (Y-junction dimensions can be optimized)
- SrM-2: best candidate (ΔH 3 times lower than those of SrM-1)

SPCD 2016 11/17

Self-biased circulators: 2nd run

Optimized structure

Simulated optimized performances of SrM-2-based circulator


H _{app} (Oe)	IL _{min} (dB) @f GHz	Isolation (dB)	RL (dB)	RBW _{lso < -15dB} (%)
0	0.41 @38.1 GHz	21.2	24.6	16.9
	SPCD 2016 12/17		THALES	COBHAM

Self-biased circulators: 2nd run

Lab

THAL

Dicrowave measurement

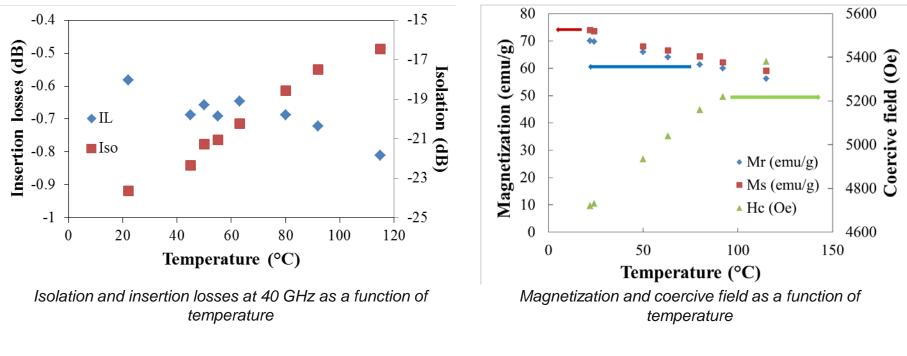
Measured S-parameters of the optimized Y-junction

IL _{min} (dB) @ f GHz	0,41 @ 38,9 GHz	
Isolation (dB)	26,5	
RL (dB)	30,7	
RBW _{lso < -15 dB} (%)	10,4	

$$\Rightarrow$$
 IL_{max} in BW = 0,52 dB

⇒ Ripple = 0,11 dB

ES


COB

- Significant improvement compared to 1st run
- Hexaferrites: competitive / spinel ferrites

SPCD 2016 13/17

Self-biased circulators: 2nd run

Effect of temperature

- \blacktriangleright @ 40 GHz & 115°C: ΔIL = 0.23 dB, Δiso = 7 dB
- Isolation remains > 15 dB up to 115°C

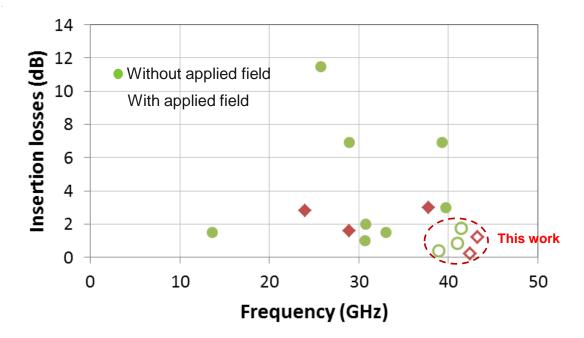
 \blacktriangleright Decrease of M_s and M_r = 20%

ГПВ

> Increase of $H_c = 14\%$

THALES

> Retro-simulations: linear increase of ΔH as a function of temperature ($\Delta H_{22^{\circ}C}$ = 400 Oe and $\Delta H_{115^{\circ}C}$ = 760 Oe)


LabiSTICC

SPCD 2016 14/17

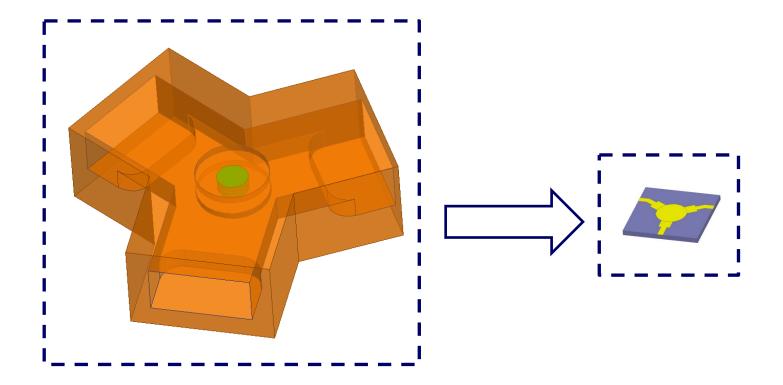
Conclusions and prospects

Selection of a lanthanum-cobalt substituted strontium hexaferrite for mm-wave applications

- Sest performances without applied field: IL = 0.41 dB @ 38.9 GHz, RBW = 10.4% (4 GHz)
- Measurements vs temperature: quite good stability

Insertion losses as a function of frequency measured on hexaferrite-based circulators

THALES


CORL

SPCD 2016 15/17

Conclusions and prospects

Realization of integrated mm-wave self-biased circulators and isolators

LabⁱSTICC THALES

COBHAM

> Measured performances at a next SPCD...

SPCD 2016 16/17

Acknowledgements

Thank you for your attention

Lab

THALES

FNR

SPCD 2016 17/17